45 research outputs found

    Symmetry classes of alternating sign matrices in the nineteen-vertex model

    Full text link
    The nineteen-vertex model on a periodic lattice with an anti-diagonal twist is investigated. Its inhomogeneous transfer matrix is shown to have a simple eigenvalue, with the corresponding eigenstate displaying intriguing combinatorial features. Similar results were previously found for the same model with a diagonal twist. The eigenstate for the anti-diagonal twist is explicitly constructed using the quantum separation of variables technique. A number of sum rules and special components are computed and expressed in terms of Kuperberg's determinants for partition functions of the inhomogeneous six-vertex model. The computations of some components of the special eigenstate for the diagonal twist are also presented. In the homogeneous limit, the special eigenstates become eigenvectors of the Hamiltonians of the integrable spin-one XXZ chain with twisted boundary conditions. Their sum rules and special components for both twists are expressed in terms of generating functions arising in the weighted enumeration of various symmetry classes of alternating sign matrices (ASMs). These include half-turn symmetric ASMs, quarter-turn symmetric ASMs, vertically symmetric ASMs, vertically and horizontally perverse ASMs and double U-turn ASMs. As side results, new determinant and pfaffian formulas for the weighted enumeration of various symmetry classes of alternating sign matrices are obtained.Comment: 61 pages, 13 figure

    Fusion hierarchies, TT-systems and YY-systems for the dilute A2(2)A_2^{(2)} loop models

    Full text link
    The fusion hierarchy, TT-system and YY-system of functional equations are the key to integrability for 2d lattice models. We derive these equations for the generic dilute A2(2)A_2^{(2)} loop models. The fused transfer matrices are associated with nodes of the infinite dominant integral weight lattice of s(3)s\ell(3). For generic values of the crossing parameter λ\lambda, the TT- and YY-systems do not truncate. For the case λπ=(2pp)4p\frac{\lambda}{\pi}=\frac{(2p'-p)}{4p'} rational so that x=eiλx=\mathrm{e}^{\mathrm{i}\lambda} is a root of unity, we find explicit closure relations and derive closed finite TT- and YY-systems. The TBA diagrams of the YY-systems and associated Thermodynamic Bethe Ansatz (TBA) integral equations are not of simple Dynkin type. They involve p+2p'+2 nodes if pp is even and 2p+22p'+2 nodes if pp is odd and are related to the TBA diagrams of A2(1)A_2^{(1)} models at roots of unity by a Z2{\Bbb Z}_2 folding which originates from the addition of crossing symmetry. In an appropriate regime, the known central charges are c=16(pp)2ppc=1-\frac{6(p-p')^2}{pp'}. Prototypical examples of the A2(2)A_2^{(2)} loop models, at roots of unity, include critical dense polymers DLM(1,2){\cal DLM}(1,2) with central charge c=2c=-2, λ=3π8\lambda=\frac{3\pi}{8} and loop fugacity β=0\beta=0 and critical site percolation on the triangular lattice DLM(2,3){\cal DLM}(2,3) with c=0c=0, λ=π3\lambda=\frac{\pi}{3} and β=1\beta=1. Solving the TBA equations for the conformal data will determine whether these models lie in the same universality classes as their A1(1)A_1^{(1)} counterparts. More specifically, it will confirm the extent to which bond and site percolation lie in the same universality class as logarithmic conformal field theories.Comment: 34 page

    Boundary algebras and Kac modules for logarithmic minimal models

    Get PDF
    Virasoro Kac modules were initially introduced indirectly as representations whose characters arise in the continuum scaling limits of certain transfer matrices in logarithmic minimal models, described using Temperley-Lieb algebras. The lattice transfer operators include seams on the boundary that use Wenzl-Jones projectors. If the projectors are singular, the original prescription is to select a subspace of the Temperley-Lieb modules on which the action of the transfer operators is non-singular. However, this prescription does not, in general, yield representations of the Temperley-Lieb algebras and the Virasoro Kac modules have remained largely unidentified. Here, we introduce the appropriate algebraic framework for the lattice analysis as a quotient of the one-boundary Temperley-Lieb algebra. The corresponding standard modules are introduced and examined using invariant bilinear forms and their Gram determinants. The structures of the Virasoro Kac modules are inferred from these results and are found to be given by finitely generated submodules of Feigin-Fuchs modules. Additional evidence for this identification is obtained by comparing the formalism of lattice fusion with the fusion rules of the Virasoro Kac modules. These are obtained, at the character level, in complete generality by applying a Verlinde-like formula and, at the module level, in many explicit examples by applying the Nahm-Gaberdiel-Kausch fusion algorithm.Comment: 71 pages. v3: version published in Nucl. Phys.

    Integrability and conformal data of the dimer model

    Full text link
    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=2c=-2 description. Using Lieb's transfer matrix and its description in terms of the Temperley-Lieb algebra TLnTL_n at β=0\beta = 0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analysed in the scaling limit and the result for L0c24L_0-\frac c{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of TLnTL_n and are found to yield a c=2c=-2 realisation of the Virasoro algebra, familiar from fermionic bcbc ghost systems. In this realisation, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=2c=-2 conformal integrals of motion. Consistent with the expression for L0c24L_0-\frac c{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c=1c=1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c=1c=1 integrals of motion. Although this indicates that Lieb's transfer matrix description is incompatible with the c=1c=1 interpretation, it does not rule out the existence of an alternative, c=1c=1 compatible, transfer matrix description of the dimer model.Comment: 54 pages. v2: minor correction

    Fusion hierarchies, T-systems and Y-systems of logarithmic minimal models

    Full text link
    A Temperley-Lieb (TL) loop model is a Yang-Baxter integrable lattice model with nonlocal degrees of freedom. On a strip of width N, the evolution operator is the double-row transfer tangle D(u), an element of the TL algebra TL_N(beta) with loop fugacity beta=2cos(lambda). Similarly on a cylinder, the single-row transfer tangle T(u) is an element of the enlarged periodic TL algebra. The logarithmic minimal models LM(p,p') comprise a subfamily of the TL loop models for which the crossing parameter lambda=(p'-p)pi/p' is parameterised by coprime integers 0<p<p'. For these special values, additional symmetries allow for particular degeneracies in the spectra that account for the logarithmic nature of these theories. For critical dense polymers LM(1,2), D(u) and T(u) are known to satisfy inversion identities that allow us to obtain exact eigenvalues in any representation and for all system sizes N. The generalisation for p'>2 takes the form of functional relations for D(u) and T(u) of polynomial degree p'. These derive from fusion hierarchies of commuting transfer tangles D^{m,n}(u) and T^{m,n}(u) where D(u)=D^{1,1}(u) and T(u)=T^{1,1}(u). The fused transfer tangles are constructed from (m,n)-fused face operators involving Wenzl-Jones projectors P_k on k=m or k=n nodes. Some projectors P_k are singular for k>p'-1, but we argue that D^{m,n}(u) and T^{m,n}(u) are well defined for all m,n. For generic lambda, we derive the fusion hierarchies and the associated T- and Y-systems. For the logarithmic theories, the closure of the fusion hierarchies at n=p' translates into functional relations of polynomial degree p' for D^{m,1}(u) and T^{m,1}(u). We also derive the closure of the Y-systems for the logarithmic theories. The T- and Y-systems are the key to exact integrability and we observe that the underlying structure of these functional equations relate to Dynkin diagrams of affine Lie algebras.Comment: 77 page

    Fusion hierarchies, TT-systems and YY-systems for the A2(1)A_2^{(1)} models

    Full text link
    The family of A2(1)A^{(1)}_2 models on the square lattice includes a dilute loop model, a 1515-vertex model and, at roots of unity, a family of RSOS models. The fused transfer matrices of the general loop and vertex models are shown to satisfy s(3)s\ell(3)-type fusion hierarchies. We use these to derive explicit TT- and YY-systems of functional equations. At roots of unity, we further derive closure identities for the functional relations and show that the universal YY-system closes finitely. The A2(1)A^{(1)}_2 RSOS models are shown to satisfy the same functional and closure identities but with finite truncation.Comment: 36 page

    La structure de Jordan des matrices de transfert des modèles de boucles et la relation avec les hamiltoniens XXZ

    Full text link
    Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.Lattice models such as percolation, the Ising model and the Potts model are useful for the description of phase transitions in two dimensions. Finding analytical solutions is done by calculating the partition function, which in turn requires finding eigenvalues of transfer matrices. At the critical point, the two dimensional statistical models are invariant under conformal transformations and the construction of rational conformal field theories, as the continuum limit of these lattice models, allows one to compute the partition function at the critical point. Many researchers think however that the paradigm of rational conformal conformal field theories can be extended to include models with non diagonalizable transfer matrices. These models would then be described, in the scaling limit, by logarithmic conformal field theories and the representations of the Virasoro algebra coming into play would be indecomposable. We recall the construction of the double-row transfer matrix D_N(λ, u) of the Fortuin-Kasteleyn model, seen as an element of the Temperley-Lieb algebra. This transfer matrix comes into play in physical theories through its representation in link modules (or standard modules). The vector space on which this representation acts decomposes into sectors labelled by a physical parameter d, the number of defects, which remains constant or decreases in the link representations. This thesis is devoted to the identification of the Jordan structure of D_N(λ, u) in the link representations. The parameter β = 2 cos λ = −(q + 1/q) fixes the theory : for instance β = 1 for percolation and √2 for the Ising model. On the geometry of the strip with open boundary conditions, we show that D_N(λ, u) has the same Jordan blocks as its highest Fourier coefficient, F_N. We study the non-diagonalizability of F_N through the divergences of some of the eigenstates of ρ(F_N) that appear at the critical values of λ. The Jordan cells we find in ρ(D_N(λ, u)) have rank 2 and couple sectors d and d′ when specific constraints on λ, d, d′ and N are satisfied. For the model of critical dense polymers (β = 0) on the strip, the eigenvalues of ρ(D_N(λ, u)) were known, but their degeneracies only conjectured. By constructing an isomorphism between the link modules on the strip and a subspace of spin modules of the XXZ model at q = i, we prove this conjecture. We also show that the restriction of the Hamiltonian to any sector d is diagonalizable, and that the XX Hamiltonian has rank 2 Jordan cells when N is even. Finally, we study the Jordan structure of the transfer matrix T_N(λ, ν) for periodic boundary conditions. When λ = πa/b and a, b ∈ Z×, the matrix T_N(λ, ν) has Jordan blocks between sectors, but also within sectors. The approach using F_N admits a generalization to the present case and allows us to probe the Jordan cells that tie different sectors. The rank of these cells exceeds 2 in some cases and can grow indefinitely with N. For the Jordan blocks within a sector, we show that the link modules on the cylinder and the XXZ spin modules are isomorphic except for specific curves in the (q, v) plane. By using the behavior of the transformation i_N^d in a neighborhood of the critical values (q_c, v_c), we explicitly build Jordan partners of rank 2 and discuss the existence of Jordan cells with higher rank

    The Jordan Structure of Two Dimensional Loop Models

    Full text link
    We show how to use the link representation of the transfer matrix DND_N of loop models on the lattice to calculate partition functions, at criticality, of the Fortuin-Kasteleyn model with various boundary conditions and parameter β=2cos(π(1a/b)),a,bN\beta = 2 \cos(\pi(1-a/b)), a,b\in \mathbb N and, more specifically, partition functions of the corresponding QQ-Potts spin models, with Q=β2Q=\beta^2. The braid limit of DND_N is shown to be a central element FN(β)F_N(\beta) of the Temperley-Lieb algebra TLN(β)TL_N(\beta), its eigenvalues are determined and, for generic β\beta, a basis of its eigenvectors is constructed using the Wenzl-Jones projector. To any element of this basis is associated a number of defects dd, 0dN0\le d\le N, and the basis vectors with the same dd span a sector. Because components of these eigenvectors are singular when bZb \in \mathbb{Z}^* and a2Z+1a \in 2 \mathbb{Z} + 1, the link representations of FNF_N and DND_N are shown to have Jordan blocks between sectors dd and dd' when dd<2bd-d' < 2b and (d+d)/2b1 mod 2b(d+d')/2 \equiv b-1 \ \textrm{mod} \ 2b (d>dd>d'). When aa and bb do not satisfy the previous constraint, DND_N is diagonalizable.Comment: 55 page
    corecore